Mathematics
First term of 2015/2016
Final Exam
Time: 3 hours

Answer the following FIVE questions:

Question 1 [15 points]:

1.1 Consider the following matrix:

$$\mathbf{A} = \begin{bmatrix} 0 & \mathbf{0} & \mathbf{2} & \mathbf{0} \\ 2 & -1 & 0 & \mathbf{0} \\ 1 & -1 & 0 & \mathbf{0} \\ -1 & 1 & \mathbf{0} & 1 \end{bmatrix}$$

Which of the following statement is True (Mention clearly the reasons):

- 1.1.1 The Columns are linearly dependent.
- 1.1.2 The Matrix isn't invertible.
- 1.1.3 The Matrix has determinant -2.
- 1.1.4 None of the above.
- 1.2 The Matrix Q has orthonormal columns q_1 , q_2 , q_3

$$Q = \begin{bmatrix} 0.1 & 0.5 & a \\ 0.7 & 0.5 & b \\ 0.1 & -0.5 & c \\ 0.7 & -0.5 & d \end{bmatrix}$$

- 1.2.1 What equations must be satisfied by the numbers a, b, c, d?
- 1.2.2 Is there a unique choice for those real numbers?
- 1.2.3 Suppose Gram-Schmidt starts with those same first two columns and with the third column $\underline{a} = (1\ 1\ 1)^{T}$. What third column would it choose for q_3 .

Question 2 [15 points]:

- 2.1 Suppose $\{\underline{v}_1, \underline{v}_2, \underline{v}_3\}$ is a linear independent set in \mathbb{R}^n . Show that $\{\underline{v}_1, \underline{v}_1 + \underline{v}_2, \underline{v}_1 + \underline{v}_2 + \underline{v}_3\}$ is also linearly independent.
- 2.2 For $A = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}$; and assume that det(A) = -2; Find:
 - 2.2.1 det(-2A).
 - 2.2.2 $\det(3(\mathbf{A}^T)^{-1})$.
 - 2.2.3 $dcr \begin{bmatrix} a & g & d \\ b & h & e \\ c + 2a & i + 2g & f + 2d \end{bmatrix}$

Dr. Waleed abdel magied

Page 1/2

2.3 Obtain the inverse of the matrix
$$\mathbf{A} = \begin{bmatrix} 7 & 4 & 0 & 0 & 0 \\ 5 & 3 & 0 & 0 & 0 \\ 0 & 0 & 5 & 4 & 0 \\ 0 & 0 & 0 & 3 & 2 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$

Question 3 [15 points]:

Consider the linear system $A\underline{x} = \underline{b}$ where:

$$\mathbf{A} = \begin{bmatrix} 1 & -1 & -2 & -2 & -2 \\ 3 & -2 & -2 & -2 & -2 \\ 4 & -3 & -4 & -4 & -4 \end{bmatrix}, \ \underline{b} = \begin{bmatrix} 3 \\ -1 \\ 2 \end{bmatrix}$$

- 3.1 Find the rank of the matrix A.
- 3.2 Is the system of equations consistent? Why?
 - 3.3 Solve the linear system $A\underline{x} = \underline{b}$.
 - 3.4 Write the solution set for $A\underline{x} = \underline{0}$

Question 4 [25 points]:

- 4.1 Suppose A_n has eigenvalue λ with corresponding eigenvector \underline{v} :
 - 4.1.1 If **A** is invertible, is $\underline{\mathbf{v}}$ still eigenvector \mathbf{A}^{-1} ? If so, what is the corresponding eigenvalue? If not, explain why not.
 - 4.1.2 Is $3\underline{v}$ an eigenvector of **A**? If so, what is the corresponding eigenvalue? If not, explain why not.
- 4.2 For the matrix $\mathbf{A} = \begin{bmatrix} 0 & 1 & 0 \\ 4 & 0 & 0 \\ 0 & 0 & 3 \end{bmatrix}$
 - 4.2.1 Find the eigenvalues of matrix A?
 - 4.2.2 Evaluate $\sin(\mathbf{A} t)$ by using minimal polynomial method.

Question 5 [15 points]:

Solve:

$$\underline{\dot{x}}(t) = \mathbf{A} \, \underline{x}(t)$$
, where: $\mathbf{A} = \begin{bmatrix} 4 & 0 & -2 \\ 2 & 5 & 4 \\ 0 & 0 & 5 \end{bmatrix}$; and: $\underline{x}(0) = \begin{bmatrix} -2 \\ -2 \\ 1 \end{bmatrix}$

Good Luck

Dr. Waleed abdel magied

Page 2/2